Response of maize (Zea maysL) inbred lines to different herbicide combinations
نویسندگان
چکیده
منابع مشابه
Genetic Diversity in Maize (Zea mays L.) Inbred Lines
Thirty yellow inbred lines of normal maize were evaluated for thirteen parameters at the experimental field of Hajee Mohammad Danesh Science and Technology University during 2010-11 to study the genetic divergence using multivariate analysis. The thirty inbreds fell into six distinct clusters. The intra-cluster distances in all the six clusters were more or less low, indicating that the genotyp...
متن کاملResponse of Yield and Yield Components of Maize (Zea Mayz L.) to Different Bio Fertilizers
A experiment was lay out in order to evaluate the effects of different biofertilizers on yield and yield components of maize at the Lorestan provience, Iran. The experiment was a factorial design with three replications. Treatments were three nitrogen biofrtilizers (Nitrokara (N1), O4 (N2), O6 (N3) and control (N4)) and three phosphate biofrtilizers ...
متن کاملResponse of Yield and Yield Components of Maize (Zea Mayz L.) to Different Bio Fertilizers
A experiment was lay out in order to evaluate the effects of different biofertilizers on yield and yield components of maize at the Lorestan provience, Iran. The experiment was a factorial design with three replications. Treatments were three nitrogen biofrtilizers (Nitrokara (N1), O4 (N2), O6 (N3) and control (N4)) and three phosphate biofrtilizers ...
متن کاملRevealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies
Phosphorus (P) is an essential plant nutrient, and deficiency of P is one of the most important factors restricting maize yield. Therefore, it is necessary to develop a more efficient program of P fertilization and breeding crop varieties with enhanced Pi uptake and use efficiency, which required understanding how plants respond to Pi starvation. To understand how maize plants adapt to P-defici...
متن کاملCharacterization of miRNAs in Response to Short-Term Waterlogging in Three Inbred Lines of Zea mays
Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: African Journal of Agricultural Research
سال: 2018
ISSN: 1991-637X
DOI: 10.5897/ajar2018.13231